If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24r^2+14r-90=0
a = 24; b = 14; c = -90;
Δ = b2-4ac
Δ = 142-4·24·(-90)
Δ = 8836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8836}=94$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-94}{2*24}=\frac{-108}{48} =-2+1/4 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+94}{2*24}=\frac{80}{48} =1+2/3 $
| -36+15w=3w-1w+4w | | 2t-1=23 | | -36w+15w=3w-1w+4w | | -11x-19=-129 | | 4x+7-9x=16-13x+8x-9 | | 5^x+4=6^x-6 | | 110+.8x=30+.9x | | 13=-4.8x | | 6x^2+7x+3=100 | | -9x+13=-167 | | 5u=2u | | 5x-22=3x-11 | | 1-|1/3-5q|=-6 | | F(x)=x-6x-1 | | 5x-0.9x=4.51 | | g/5+3=13 | | -2x-24=-5x+12 | | -8x+17=-135 | | (4u-14)=6 | | -5x(2x+9)(x-11)=0 | | 6t+5.99+44.51=9(t+2.5 | | -16t^2-28t+368=0 | | 4(x-2)-(2x+1)=-3(x+3) | | 12x-95=3x+76 | | 9x-14 = -95 | | (6v-15)=3 | | 175m-125m+43,425=45,900-175m | | x=5x-80 | | .5557=(x-59)/9 | | -12x-7=24x-6(6x-7) | | 10p^2+11p-6=0 | | 2/3x-9-2x+2=1 |